cdc-coteauxdegaronne
» » Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften)
eBook Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften) ePub

eBook Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften) ePub

by Serge Lang,William Fulton

  • ISBN: 1441930736
  • Category: Mathematics
  • Subcategory: Math Science
  • Author: Serge Lang,William Fulton
  • Language: English
  • Publisher: Springer; Softcover reprint of hardcover 1st ed. 1985 edition (December 3, 2010)
  • Pages: 206
  • ePub book: 1655 kb
  • Fb2 book: 1849 kb
  • Other: doc mobi rtf lrf
  • Rating: 4.8
  • Votes: 291

Description

Riemann-Roch algebra, hardcover, 203pp. Bibliography: p. -198. Series: Grundlehren der mathematischen Wissenschaften (Book 277).

Riemann-Roch algebra, hardcover, 203pp. Good copy, previous owners name inside front end-paper. Hardcover: 206 pages. ISBN-13: 978-0387960869. Product Dimensions: . x . inches.

Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften). William Fulton, Serge Lang. Download (pdf, . 5 Mb) Donate Read. Epub FB2 mobi txt RTF. Converted file can differ from the original. If possible, download the file in its original format.

Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften) (v. 277). 1 Mb) Donate Read.

Download books for free. Series: Grundlehren der mathematischen Wissenschaften 277. File: PDF, . 1 MB. Читать онлайн.

Riemann-Roch Algebra. by William Fulton and Serge Lang. In various contexts of topology, algebraic geometry, and algebra (. group representations), one meets the following situation. One has two contravariant functors K and A from a certain category to the category of rings, and a natural transformation p: K-+A of contravariant functors. The Chern character being the central exam- ple, we call the homomorphisms Px: K(X)-+ A(X) characters.

Grundlehren der mathematischen Wissenschaften (subtitled Comprehensive Studies in Mathematics), Springer’s first series in higher mathematics, was founded by Richard Courant in 1920. It was conceived as a series of modern textbooks. A number of significant changes appear after World War II.

Поиск книг BookFi BookSee - Download books for free. Riemann-Roch Algebra (Grundlehren der mathematischen Wissenschaften) (v.

One purpose of this monograph is to describe this algebra independently of any context, so that it can serve axiomatically as the need . Riemann-Roch Algebra Grundlehren der mathematischen Wissenschaften (Том 277).

One purpose of this monograph is to describe this algebra independently of any context, so that it can serve axiomatically as the need arises. Издание: иллюстрированное. Springer Science & Business Media, 2013.

Hyperbolic Complex Spaces (Grundlehren der mathematischen Wissenschaften). Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics A Selection 207. Differentiable Manifolds (Grundlehren Der Mathematischen Wissenschaften). Categories and Sheaves (Grundlehren der mathematischen Wissenschaften). Algebra II: Ring Theory (Grundlehren der mathematischen Wissenschaften 191). Constructive Approximation (Grundlehren der mathematischen Wissenschaften). 20. . It's easy to get started - we will give you example code.

In various contexts of topology, algebraic geometry, and algebra (e.g. group representations), one meets the following situation. One has two contravariant functors K and A from a certain category to the category of rings, and a natural transformation p:K--+A of contravariant functors. The Chern character being the central exam­ ple, we call the homomorphisms Px: K(X)--+ A(X) characters. Given f: X--+ Y, we denote the pull-back homomorphisms by and fA: A(Y)--+ A(X). As functors to abelian groups, K and A may also be covariant, with push-forward homomorphisms and fA: A( X)--+ A(Y). Usually these maps do not commute with the character, but there is an element r f E A(X) such that the following diagram is commutative: K(X)~A(X) fK j J~A K( Y) ------p;-+ A( Y) The map in the top line is p x multiplied by r f. When such commutativity holds, we say that Riemann-Roch holds for f. This type of formulation was first given by Grothendieck, extending the work of Hirzebruch to such a relative, functorial setting. Since then viii INTRODUCTION several other theorems of this Riemann-Roch type have appeared. Un­ derlying most of these there is a basic structure having to do only with elementary algebra, independent of the geometry. One purpose of this monograph is to describe this algebra independently of any context, so that it can serve axiomatically as the need arises.